Illustrating the Financial Benefits of Green Chemistry

Economic Value Added (EVA) = (ROIC-WACC) * Capital Employed.

Levers of Change: There are three levers which Green Chemistry principles can move to increase EVA (note these may be worked separately or in combination):

- 1. Increase ROIC Driven up by increasing revenues from sales or reduced costs¹
- 2. Reduce WACC Driven down by decreasing risk perceived by capital providers
- 3. Increase Capital Employed Expand amounts and sources of available capital²

Net Present Value (NPV) discounts the future, a hard fit with sustainability. Conflict arises, because sustainability asks us to value the future like the present, not discount it with compound interest. Nevertheless, many firms may use NPV in project finance.³

Green Chemistry Principle	ROIC increase?	WACC decrease?	NPV Positive?	Positive Externality?
1. Prevent waste rather than treat it after it is formed	Yes Clean-up, Liability, and Insurance Cost Savings	Yes Reduced Firm or Industry Risk Factors	Maybe If discounted future clean-up costs > cost of preventive design	Yes Waste Reduction
2. Maximize the incorporation of all process materials into the final product	Yes Reduced Input & Waste Disposal Costs	Neutral	Yes Reduced Input & Waste Disposal Costs	Yes Waste Reduction
3. Use and generate substances of little or no toxicity	Yes Clean-up, Liability, and Insurance Cost Savings	Yes Reduced Firm or Industry Risk Factors	Maybe If discounted future clean-up costs > cost of non-toxic inputs	Yes Toxic Waste Reduction
4. Preserve efficacy of function while reducing toxicity	Yes Clean-up, Liability, and Insurance Cost Savings	Yes Reduced Firm or Industry Risk Factors	Maybe If discounted future clean-up costs > cost of non-toxic inputs	Yes Toxic Waste Reduction
5. Eliminate or minimize use of or toxicity of auxiliary substances (e.g. solvents)	Yes Clean-up, Liability, and Insurance Cost Savings	Yes Reduced Firm or Industry Risk Factors	Maybe If discounted future clean-up costs > cost of non-toxic inputs	Yes Toxic Waste Reduction

¹ ROIC (Return on Invested Capital) increases if, a) costs decline, revenues stay constant, b) costs stay constant, revenues increase, or c) costs decline *and* revenues grow.

² WACC (Weighted Average Cost of Capital) is comprised of opportunity cost of capital for the lender + firm risk + industry risk + project risk. Managers can only control firm and project risk.

³ ROIC/ROCE/ROA/ROI are similar financial tools that can be adapted to the approach here. This crib sheet is intended for managers to support sustainable decisions regardless of the tools that their firm uses.

archerg05@darden.virginia.edu, larsona@darden.virginia.edu, yorkj05@darden.virginia.edu							
Green Chemistry Principle	ROIC increase?	WACC decrease?	NPV Positive?	Positive Externality?			
6. Recognize and minimize energy requirements, shoot for room temperature	Maybe If energy cost savings are not offset by new input costs	Neutral	Maybe If energy cost savings are not offset by new input costs	Yes Reduced Energy Demand			
7. Use renewable raw material feedstock if economically and technically possible	Neutral	Neutral	Maybe If discounted future costs of renewable feedstocks < cost of non-renewable inputs	Yes Towards Sustainability			
8. Avoid unnecessary derivatization (e.g. blocking group, protection/deprotection)	Maybe If input & processing costs do not increase	Neutral	Maybe If energy cost savings are not offset by new input costs	Yes Waste Reduction			
9. Consider catalytic reagents superior to stoichiometric reagents	Maybe If input & processing costs do not increase	Neutral	Maybe If energy cost savings are not offset by new input costs	Yes Waste Reduction			
10. Design end product to innocuously degrade, not persist	Maybe If ultimate disposal is or becomes the responsibility of the manufacturer	Maybe If ultimate disposal is anticipated to become the responsibility of the manufacturer	Maybe If ultimate disposal is or becomes the responsibility of the manufacturer	Yes Waste Reduction			
11. Develop analytical methodologies that facilitate real-time monitoring and control	Maybe If monitoring costs are offset by savings from a lack of errors, work- stoppage & clean-up	Yes Reduced Firm or Industry Risk Factors	Maybe If monitoring costs are offset by savings from a lack of errors, work-stoppage, and clean-ups	Yes Fewer Disasters & Reduced Clean-up Costs			
12. Choose substances/ forms that minimize potential for accidents, releases and fires	Yes Clean-up, Liability, and Insurance Cost Savings	Yes Reduced Firm or Industry Risk Factors	Yes Clean-up, Liability, and Insurance Cost Savings	Yes Fewer Disasters & lower Clean- up Costs			

FINANCIAL BENEFITS OF GREEN CHEMISTRY

- Principle 12 is a 'No-Brainer', offering financial gains to any firm or manager, regardless of the financial evaluation tools they use. Principal 2 is close behind.
- Principles 1,3,4 & 5 are both ROIC increasing and WACC decreasing, suggesting that application of these principles should yield easy financial gains.
- Principles 6, 8-11 hold many conditional gains. Think of a 'Maybe' as a conditional 'Yes.' Changing conditions demonstrate financial gains here too.